

ISSN 2349-4506 Impact Factor: 2.785

## Global Journal of Engineering Science and Research Management

### **OPTIMAL DESIGN OF DEEP FOUNDATION PIT CONSTRUCTION PROJECT IN WUHAN**

#### Nguyen Xuan Loi\*, Wu Li, Nguyen Khanh Tung

\* Master student, Faculty of Engineering, China University of Geosciences (Wuhan)
Professor, Faculty of Engineering, China University of Geosciences (Wuhan)
Ph.D student, Faculty of Engineering, China University of Geosciences (Wuhan) FECON JSC, Hanoi, Vietnam

#### DOI: 10.5281/zenodo.154541

**KEYWORDS:** Deep foundation; Deformation and earth pressure; Pile-Anchor support; Double-row piles.

### ABSTRACT

Deep foundation pit construction project is one of hot and difficult problems in rock soil engineering. How to control the deformation of the pits effectively and economically is what we all want. Retaining structure deformation of foundation pit is an important factor on the deformation of foundation pit. Reference of domestic and foreign research and the experience of similar projects, combined with the characteristics of Wuhan project, calculation, analyses and compared two design options and there were some meaningful conclusions.

### **INTRODUCTION**

This project has 9 floors, including 2 basements (some palaces are 3 basements). The basement floor -17.20 meters depth. At the second basement, maximum load of column is 15.000 kN. At the third basement, maximum load of column is 16.500 kN. Above structure of the building total load is 786.000 kN, and underground structure is 451,000 kN. Above structure of the building area is 22.512m2, and underground structure is 43.652 m2, as shown in figure 1.



#### Figure 1. Project site layout

According AB section detail, project geological, hydrological conditions and the surrounding environment conditions, put forward multiple supporting structure design options: Option 1 is pile-anchor support <sup>[1-2]</sup>; option 2 is double-row piles <sup>[3-4]</sup>. This paper using Lizheng software <sup>[5-6]</sup> for the calculation of AB section construction process. Compare the results of two options, then chosed the best of option.



ISSN 2349-4506 Impact Factor: 2.785

### Global Journal of Engineering Science and Research Management OPTION 1: PILE-ANCHOR SUPPORT DESIGN AND CALCULATION



Figure 2. pile-anchor support calculation diagram

Main characteristic of pile-anchor support system is use anchor support instead of the foundation pit horizontal struts, and provide supporting pile tension, reduce the displacement and internal force of supporting pile, and extent permitted to control the deformation of foundation pit. The scheme of calculation diagram as shown in figure 2.

According to geology report, drilling holes and combined with the relevant specifications, documents, determine the foundation rock and soil layer design parameters are shown in table 1. Calculated parameters input and output results by Lizheng software are shown in table  $2 \sim 5$  and figure 3.

| Layer | Soil                                               | Layer Thickness<br>(m) | γ (kN/m <sup>3</sup><br>) | Cohesive force<br>(kPa) | Angle of internal<br>friction<br>( <sup>0</sup> ) |
|-------|----------------------------------------------------|------------------------|---------------------------|-------------------------|---------------------------------------------------|
| 1     | Back fill                                          | 1.8                    | 19.5                      | 8.0                     | 12.0                                              |
| 2     | Clay                                               | 5.0                    | 19.7                      | 40.2                    | 16.2                                              |
| 3     | Clay, gravel                                       | 2.5                    | 18.5                      | 27.9                    | 11.4                                              |
| 4     | Red clay                                           | 10.7                   | 17.8                      | 38.7                    | 15.7                                              |
| 5     | Siliceous rocks and quartz sandstone fracture zone | 20.0                   | 22                        | 3000.0                  | 36.0                                              |

|--|

| Internal force calculation method | The incremental method                                      | The pile spacing (m)                      | 1.2   |
|-----------------------------------|-------------------------------------------------------------|-------------------------------------------|-------|
| Specification                     | Deep foundation pit<br>engineering in Wuhan<br>guide series | The concrete strength grade               | C30   |
| Foundation pit level              | Level 1                                                     | Presence of crown beam                    | Yes   |
| Pile top leve (m)                 | 0                                                           | Crown beam width (m)                      | 1     |
| Depth of foundation pit H(m)      | 17.2                                                        | Crown beam height (m)                     | 0.6   |
| The depth of the fixing (m)       | 4                                                           | The level of the lateral stiffness (MN/m) | 7.467 |



### Global Journal of Engineering Science and Research Management

| Importance coefficient of foundation pit side wall $\Box_{\Box}$ | 1.1      | Supporting structure on the level of concentration | 0 |
|------------------------------------------------------------------|----------|----------------------------------------------------|---|
| Pile cross section type                                          | circular | The number of load                                 | 1 |
| The pile diameter (m)                                            | 0.8      | Put the slope series                               | 0 |

| Table 3. Anchor detail |        |            |          |           |        |        |
|------------------------|--------|------------|----------|-----------|--------|--------|
| Anchor                 | Anchor | Horizontal | Vertical | Angle of  | Total  | Anchor |
| row number             | type   | distance   | distance | incidence | length | length |
|                        |        | (m)        | (m)      | $(^{0})$  | (m)    | (m)    |
|                        |        |            |          |           |        |        |
| 1                      | anchor | 1.2        | 3        | 20        | 22     | 9      |
| 2                      | anchor | 1.2        | 5        | 20        | 19     | 8      |
| 3                      | anchor | 1.2        | 5        | 20        | 16     | 6      |



Figure 3. Results after excavation

Results Calculated shown in figure 3, at depth 17.2 m in foundation pit of the maximal displacement of 43.28 mm, maximum bending moment of 896.06kN.m.

| I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u n e = I u | Table | 4. Rein | forcement | of nile | wall |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-----------|---------|------|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---------|-----------|---------|------|

| Reinforcement type     | Level  | Reinforced detail | Real calculation area (mm <sup>2</sup> or mm <sup>2</sup> /m) |
|------------------------|--------|-------------------|---------------------------------------------------------------|
| longitudinal bar       | HRB335 | 22\$              | 10799[10416]                                                  |
| stirrup                | HRB335 | φ 20@150          | 4189[3760]                                                    |
| Strengthen the stirrup | HRB335 | φ14@2000          | 154                                                           |

| Table | 5 | Anchor | reinforcement table |  |
|-------|---|--------|---------------------|--|
|       |   |        |                     |  |

| Anchor<br>row<br>number Anchor<br>type Steel bar and<br>reinforced | The<br>free<br>length<br>(m) | Anchor<br>length<br>(m) | Real<br>calculation<br>area (mm <sup>2</sup> ) | Anchor<br>stiffness<br>(MN/m) |
|--------------------------------------------------------------------|------------------------------|-------------------------|------------------------------------------------|-------------------------------|
|--------------------------------------------------------------------|------------------------------|-------------------------|------------------------------------------------|-------------------------------|

http:// www.gjesrm.com © Global Journal of Engineering Science and Research Management



1

[Loi et al., 3(9): September, 2016]

## Global Journal of Engineering Science and Research Management

| 1 | anchor | 1¢16 | 13 | 9 | 201[107]   | 2.69  |
|---|--------|------|----|---|------------|-------|
| 2 | anchor | 2¢36 | 11 | 8 | 2036[1826] | 29.37 |
| 3 | anchor | 2¢32 | 10 | 6 | 1608[1399] | 26.30 |

### DOUBLE ROW PILES DESIGN CALCULATION

Double row piles design calculation diagram as shown in figure 4. Lizheng software calculated parameters input and output results are shown in table  $6 \sim 8$  and figure 5



Figure 4 Double row piles and calculating diagram

| Internal force calculation method                             | The incremental method                                                | Even the beam width<br>(m)                         | 1.2   |
|---------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------|-------|
| Specification                                                 | Construction of foundation pit<br>supporting technology<br>procedures | Crown beam width<br>(m)                            | 1     |
| Foundation pit level                                          | Level 1                                                               | In the front row pile<br>presence of crown<br>beam | Yes   |
| The relative elevation of pile head (m)                       | 0                                                                     | Crown beam width<br>(m)                            | 1.2   |
| Depth of foundation<br>pit H(m)                               | 17.2                                                                  | Crown beam height<br>(m)                           | 0.6   |
| The depth of the fixing (m)                                   | 5                                                                     | Horizontal lateral just<br>(MN/m)                  | 7.467 |
| Importance coefficient of foundation pit side wall $\gamma_0$ | 1.1                                                                   | Back row pile<br>presence of crown<br>beam         | Yes   |
| Pile cross section type                                       | Circular                                                              | Crown beam width<br>(m)                            | 1.2   |
| Diameter of pile (m)                                          | 1.0                                                                   | Crown beam height<br>(m)                           | 0.6   |

| Table 6 Bas        | sic data | for | calculating | foundation | nit |
|--------------------|----------|-----|-------------|------------|-----|
| <i>Lubie</i> 0 Dus | in uuiu  | jur | cuiculling  | jounuation | pu  |



ISSN 2349-4506 Impact Factor: 2.785

### $\mathcal F$ Global Journal of Engineering Science and Research Management

| Pile spacing (m)           | 1.8 | Horizontal lateral just<br>(MN/m) | 7.467 |
|----------------------------|-----|-----------------------------------|-------|
| Piles row distance (m)     | 2.4 | The number of overload            | 1     |
| Strength grade of concrete | C30 | Put the slope series              | 0     |



Figure 5 Results after excavation

Results Calculated shown in figure 5, at depth 17.2 m in foundation pit the maximal displacement of 45.62 mm, maximum bending moment of 1973.47 kN. m.

Table 7 Painforeament of the first new nile

| Tuble 7 Keinjorcement of the first row pile |        |                   |                                                               |  |  |
|---------------------------------------------|--------|-------------------|---------------------------------------------------------------|--|--|
| Choose reinforcement type                   | level  | Reinforced detail | Real calculation area (mm <sup>2</sup> or mm <sup>2</sup> /m) |  |  |
| longitudinal bar                            | HRB335 | 23\$\phi36        | 23411[21500]                                                  |  |  |
| stirrup                                     | HRB335 | ф 25@150          | 6545[5082]                                                    |  |  |
| Strengthen the stirrup                      | HRB335 | <b>φ</b> 14@2000  | 154                                                           |  |  |

| Choose reinforcement type | level  | Reinforced detail | Real calculation area (mm <sup>2</sup> or mm <sup>2</sup> /m) |
|---------------------------|--------|-------------------|---------------------------------------------------------------|
| longitudinal bar          | HRB335 | 26¢22             | 9883[9630]                                                    |
| Stirrup                   | HRB335 | φ 12@150          | 1508[1136]                                                    |
| Strengthen the stirrup    | HRB335 | φ 14@2000         | 154                                                           |

 Table 8 Reinforcement of the second row pile

### CONCLUSIONS

Exampled by Wuhan deep foundation pit supporting project as engineering background, using Lizheng software to calculate the pile-anchor support and double row piles option. Comparative analysis of pile - anchor support option and double row piles support option, both of which can ensure the security and stability of foundation, but the cost of pile-anchor support is far below the double-row piles support, therefore the project selected the pile anchor supporting plan as the actual construction plan.



# Global Journal of Engineering Science and Research Management

### REFERENCE

- 1. Lu Yang. Numerical simulation of the pile anchor supporting system of deep foundation pit and instance analysis [D]. Guizhou, Guizhou University, 2009.
- 2. Wang Weijuan. The design of a deep excavation pile anchor supporting structure and monitoring analysis [D]. Lanzhou: Lanzhou University of technology, 2011.
- 3. Ma Yun, Xu Guang Li. Deep foundation pit retaining structure with double-row piles calculation method and engineering application [J]. The people of the Yangtze River, 2012, 43(10): 20-23.
- 4. Wei Jian-Jun, Sun Li Ya. Application research of retaining structure with double-row piles [J]. Journal of safety science and technology of China, 2011, 7(7): 155-158.
- 5. Lizheng version 6.0 specification.
- 6. Qu Jian Jun, Tian Pei Xian. Reason is the software design of deep foundation pit with study [J]. Journal of Shanxi architecture, 2008, 34(13): 131-132.